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Path-integral quantization of electrodynamics in dielectric
media

M Bordag†§, K Kirsten†‖ and D V Vassilevich‡¶
† Institute for Theoretical Physics, Leipzig University, Augustusplatz 10/11, 04109 Leipzig,
Germany
‡ Department of Theoretical Physics, St Petersburg University, 198904 St Petersburg, Russia
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Abstract. In the present paper we study the Faddeev–Popov path-integral quantization of
electrodynamics in an inhomogeneous dielectric medium. We quantize all polarizations of the
photons and introduce the corresponding ghost fields. Using the heat kernel technique, we
express the heat kernel coefficients in terms of the dielectricityε(x) and calculate the ultraviolet
divergent terms in the effective action. No cancellation between ghosts and ‘non-physical’
degrees of freedom of the photon is observed.

1. Introduction

The Casimir effect describes the forces resulting from the vacuum fluctuations (ground state
energy) of the electromagnetic field in simple situations realized by conducting surfaces.
These forces can be viewed as retarded Van der Waals forces between the atoms constituting
the surfaces (and those within). As a generalization of this picture one can consider some
medium, which can be characterized either by atoms at positionsxi with their individual
polarizabilitiesαi or by a macroscopic permittivityε(x) and permeabilityµ(x). Again,
we can calculate the resulting potential of the Van der Waals forces or the vacuum energy
E0[ε(x), µ(x)] of the electromagnetic field in a background given byε(x) (respectively
µ(x)). Taking into account that real permittivity (respectively permeability) are functions
of the photon frequency we arrive at the problem of calculatingE0[ε(x, ω), µ(x, ω)]. The
dependence onω has as a physical background, besides others, the observation that any
medium becomes transparent forω sufficiently high (we do not consider inelastic effects
here). Thereforeε, µ→ 1 for ω→∞ should serve as a natural ultraviolet regularization.
This is widely believed, but not shown in a rigorous way as yet.

The problem of the calculation ofE0[ε(x), µ(x)], i.e. without frequency dependence,
may well be posed independently. A physical justification could be that the essential
contribution results after a proper renormalization from quite low frequenciesω, where
ε andµ can be viewed as approximately independent ofω. In that case we do not have a
natural regularization and have to proceed as in the general situation with sharp boundary
conditions or a general background field. For technical reasons we use the zeta-functional
regularization. Then the first step is to calculate the divergent contributions (the proper
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technical tool being the heat kernel expansion); the second step is to formulate a model for
the interpretation of the renormalization (this is to be able to reinterpret the subtraction of
the divergences as a renormalization of classical quantities such as volume, surface tension,
etc, as discussed in [1] or like the mass and the coupling constant of the background field
as discussed in [2]) and, finally, in a third step to calculate the renormalized ground state
energyE0. In the present paper we carry out the first step and discuss the second to some
extent.

To a large extent our technique is borrowed from the background field formalism
in gauge theories which was developed long ago (see [3–5]). There are, however, two
important differences. First, in our case the background fieldε(x) is not quantized.
Therefore, the ordinary renormalization procedure is not applicable. Second, Lorentz
invariance is broken, and, hence, we must consider the Hamiltonian quantization approach
to define a proper path-integral measure.

The forces resulting from the electromagnetic vacuum fluctuations in polarizable media
have been given much attention. The common features of most of these investigations
are sharp boundaries separating regions of different values ofε(x) and simple geometries
(planes, cylinders and so on) as well as frequency-dependentε(ω). A basic paper is [6] by
Candelas. For a dielectric sphere and cylinder, for example, calculations were performed
in [7, 8] (and earlier work cited therein). For a medium with inhomogeneous dielectric and
diamagnetic constants a perturbative analysis of the divergent contributions to the Casimir
energy up to the second order is given in [9] (actually contributions up to fourth order
appear to be divergent, cf formula (21) below). An interesting review on the topic can be
found in the book by Bermann [10]. Also, much attention had been spent on a possible
explanation of sonoluminescence as a dynamical Casimir effect, especially in a series of
papers by Schwinger [11]. Recently, the bulk and surface energy contributions have been
discussed [12, 13].

However, with respect to the renormalization it is difficult to deal with sharp boundaries
(respectively non-smooth background fields). It is known that additional contributions to
the heat kernel expansion occur and therefore additional counterterms result for which a
general theory is still missing. Therefore we restrict ourselves in the present paper toε(x)

which are smooth functions onx.
There is still another problem we have to pay attention to. In the common understanding

the quantization of QED in media is performed in the Coulomb gauge, i.e. the two ‘physical’
polarizations of the photon are quantized. Also, there are known procedures where all
polarizations of the photon are quantized and the gauge invariance (in the presence of
boundaries) is restored by ghosts which also have to fulfil boundary conditions (one of the
first is [14], later on it was discussed in [15]). In most cases their contributions cancel that
resulting from the ‘unphysical’ photons, but counterexamples are known (e.g. for QED in
curved spacetime, [16]). Within the framework of quantum optics the canonical quantization
of photons was considered in [18] without, however, analysing the ghost contributions. An
alternative approach for quantization in covariant gauge without ghosts, however restricted
to sharp boundaries, had been developed in [17].

In the present paper we analyse the problem of QED with a position-dependent
permittivity ε(x) from the point of view of general quantum gauge theory in an external
field. We analyse the canonical path-integral measure and the corresponding configuration
space measure. A gauge-fixing term is introduced together with the ghost action. Next we
analyse the ultraviolet structure of the theory by means of the heat kernel expansion. No
cancellation between ghosts and photon modes is obtained.
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Our paper is organized as follows. In the next section the quantization of the theory is
considered and the path integral is derived. In section 3 we use the heat kernel expansion to
evaluate ultraviolet divergences. Concluding remarks are given in section 4. An appendix
contains an alternative calculation to check the results of section 3.

2. Canonical quantization and gauge choice

Consider the action for the electromagnetic field in a dielectric media with permittivityε(x):

S =
∫

d4x 1
2

(
ε(x)E2− B2

)
. (1)

To avoid technical complexities we put the permeabilityµ = 1 and assume thatε depends
on spatial coordinates only.

Let us rewrite the action (1) in the canonical first-order form:

S1 =
∫

d4x

(
P i ∂0Ai + A0∂iP

i − 1

ε(x)
P iP i − 1

2
B2

)
. (2)

HereAµ is the vector potential andP i = −ε(x)Ei is the momentum conjugate toAi .
Canonical Poisson brackets are{

Ai(x, t), P
j (y, t)

} = δji δ(x− y). (3)

The same brackets were obtained in [18].A0 plays the role of a Lagrange multiplier
generating the Gauss law constraint, which in turn generates gauge transformations.
According to the general method [19] of quantization of gauge theories we can write down
the path integral

Z =
∫

DAi DA0 DP j JFPδ(χ(Ai)) exp(iS1) (4)

whereχ(Ai) is a gauge-fixing condition,JFP is the Faddeev–Popov determinant,JFP =
det{χ(A), ∂jP j }. Now we can perform the integration over the momentaP j . It produces
the factor

∏
x

√
ε(x)3 which should be absorbed in the path-integral measure DAi . We

arrive at the following expression:

Z =
∫

DÃi DA0 JFPδ(χ(A)) exp(iS) Ãi =
√
εAi. (5)

Our Ã variables coincide with theq ′ variables of Glauber and Lewenstein [18]. Note that
the measure in (5) differs from the naive one

∏
DAµ. We can use the Faddeev–Popov

trick to transform the path integral (5) to whatever gauge condition we prefer, introduce a
gauge-fixing term and ghost fields. There is nothing specific in this respect in the present
model. All steps repeat those of a standard textbook [19]. The result is

Z =
∫

DÃi DA0 DcDc̄ exp

{
i
∫

d4x
[

1
4

(
2ε(x)

(
∂0ε
−1/2Ãi − ∂iA0

)2

−(∂iε−1/2Ãk − ∂kε−1/2Ãi
)2)+ Lgf + Lghost

]}
(6)

whereLgf andLghost are the gauge-fixing term and ghost action, respectively. As usual,
we can bring the action in (6) into the form

∫
AµLµνAν , whereLµν is a second-order

differential operator. In calculating the effective action and the heat kernel expansion it
is much more convenient to deal with operators of Laplace type, i.e. operators with scalar
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leading symbol. There is a unique gauge choice which splits theLµν into a direct sum of
operators of Laplace type. This choice is

Lgf = − 1
2

(
ε−1∂iε

1/2Ãi − ε∂0A0
)2

Lghost= −c̄
(−ε−1∂iε∂i + ε∂2

0

)
c.

(7)

The action for the electromagnetic fieldA then takes the form

1
2

∫
d4x

[
ε(∂iA0)

2− ε2(∂0A0)
2+ (∂0Ãi)

2

+Ãiε−1/2
(
∂2
j δik − ei∂k + ∂iek − eiek

)
ε−1/2Ãk

]
ei = ∂i ln ε. (8)

Note, that the mixing betweenA0 and Ãi is removed completely.
The total action with gauge fixing and the ghost term is invariant under the BRST

transformations with the parameterσ(x):

δA0 = ∂0σc

δÃi = ε1/2∂iσc

δc = 0

δc̄ = (−ε−1∂iε
1/2Ãi + ε∂0A0

)
σ

(9)

which are given here to complete the picture.

3. Effective action and heat kernel expansion

Now we are able to integrate overA0, Ã and the ghosts. The resulting path integral reads,
after Wick rotation to the Euclidean domain,

Z = Z[A0] Z[Ã] Z[c̄, c] (10)

where the separate contributions are of the form

Z[A0] = det−1/2
(−∂iε∂i − ε2∂2

0

)
Z[Ã] = det−1/2

(
−1

ε
∂2
k δij − ∂2

0δij −Gi∂j +Gj∂i −Mij

)
Z[c̄, c] = det

(−ε−1∂iε∂i − ε∂2
0

)
.

(11)

We introduced the notation

Gi = ei

ε
Mij = 1

ε
(eij − eiej ) eij = ∂iej . (12)

For the functional determinants we use the integral representation

log det(L) =
∫ ∞

0

dt

t
K(L; t) (13)

where the heat kernelK(L; t) for a second-order elliptic operatorL is

K(L; t) = Tr exp(−tL). (14)

The ultraviolet behaviour of functional determinants is given by the asymptotic
expansion of the heat kernel (14) ast → +0. Since all the operators are of Laplace
type, we can use the general theory [20]. Each of the operators has the structure

L = −(gµν∂µ∂ν + aσ ∂σ + b) (15)
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wheregµν plays the role of a metric.aσ and b are local sections of the endomorphism
End(V ) of a certain vector bundle. By introducing a connectionωµ in the vector bundle
V , one can bringL into the form

L = −(gµν∇µ∇ν + E) (16)

where∇ is a sum of the Riemannian covariant derivative with respect to the metricg and
the connectionω. The explicit form ofω andE is

ωδ = 1
2gνδ

(
aν + gµσ0νµσ

)
E = b − gµν(∂µων + ωµων − ωσ0σµν). (17)

As usual,0 denotes the Christoffel connection.
Given the geometric quantitiesg, ω andE, we are able to calculate the coefficientsan

of the asymptotic expansion

Tr(f exp(−tL)) = t−2
∞∑
n=0

tnan(f, L) (18)

for a functionf . The coefficientsan(f, L) contain information on the asymptotics of the
heat kernel diagonal〈x| exp(−tL)|x〉. The analytical expressions for the first coefficients
are known [20]:

a0 = 1

(4π)2
trV

∫
d4x g1/2f

a1 = 1

(4π)2
trV

∫
d4x g1/2f

(
E + 1

6τ
)

a2 = 1

(4π)2
trV

∫
d4x g1/2 1

360f
(
60E;µµ + 60τE + 180E2+ 30�µν�

µν

+12τ;µµ + 5τ 2− 2ρ2+ 2R2
)
.

(19)

HereR, ρ and τ are the Riemann tensor, Ricci tensor and scalar curvature of the metric
g, respectively. A semicolon denotes covariant differentiation,E;µ = ∇µE. All indices are
lowered and raised with the metric tensor, trV is the bundle (matrix) trace,� is the field
strength of the connectionω:

�µν = ∂µων − ∂νωµ + ωµων − ωνωµ. (20)

The three coefficients (19) are enough to describe the one-loop ultraviolet divergences
in four-dimensional quantum field theory in an infinite spacetime.
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Now our problem is reduced to the calculation of the geometric quantities appearing in
(19). For the ghost operator we have

gij = δij g00 = ε−1(x)

0i00 =
1

2ε
ei 00

0i = − 1
2ei

ω0 = 0 ωi = 3
4ei

E = − 3
4eii − 3

16eiei

Rijkl = 0

R0
i0j = − 1

2eij + 1
4eiej

ρij = 1
2eij − 1

4eiej

ρ00 = 1

2ε

(
eii − 1

2ej ej
)

τ = eii − 1
2eiei .

(21)

For the operator acting onA0 the relevant quantities are

gij = ε−1δij g00 = ε−2(x)

0i00 =
1

ε
ei 00

0i = −ei
0kij = − 1

2(eiδjk + ej δik − ekδij )
ω0 = 0 ωi = 5

4ei

E = ε(− 5
4eii + 5

16eiei
)

Rijkl = 1
2(−ejlδik + ejkδil + eilδkj − eikδlj )

+ 1
4(epep(δjlδki − δjkδli)+ ekej δli − ekeiδjl − elej δki + eleiδjk)

R0
i0j = −eij + 1

2elelδij

ρij = 3
2eij + 1

2δij ekk + 1
4eiej − 3

4δij ekek

ρ00 = 1

ε

(
eii − 3

2ej ej
)

τ = ε(4eii − 7
2eiei

)
.

(22)

For the operator acting oñA we obtain

gij = εδij g00 = 1

0kij = 1
2(eiδjk + ej δik − ekδij )

ωabl = 1
2

(−eaδbl + ebδal − 1
2elδab

)
Eab = Mab + 1

4ε

(
ekkδab + eaeb + 5

4epepδab
)

Rijkl = 1
2(ejlδik − ejkδil − eilδkj + eikδlj )

+ 1
4(epep(δjlδki − δjkδli)+ ekej δli − ekeiδjl − elej δki + eleiδjk)

ρjk = − 1
2(ejk + eppδjk)+ 1

4(ekej − epepδkj )
τ = 1

ε

(−2epp − 1
2epep

)
.

(23)
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Here for convenience we prefer to keep the distinction between coordinate indices{i, j, k, l}
and bundle indices{a, b}, though they all run from 1 to 3. In equations (21)–(23) repeated
indices are contracted with the flat space metricδij .

It is instructive to express the heat kernel coefficients in terms ofε and its derivatives:

Kgh(f, t) = 1

(4πt)2

∫
d4x ε−1/2f

{
1+ t(− 7

12eii − 13
48eiei

)
+ 1

360t
2
(− 33eiijj − 18eieijj − 33eij eij + 237

4 eiiejj

+ 531
8 eij eiej + 33

4 eiiej ej + 837
64 eieiej ej

)+O
(
t3
)}

K[A0](f, t) = 1

(4πt)2

∫
d4x ε−5/2f

{
1+ tε(− 7

12eii − 13
48eiei

)
+ 1

360t
2ε2
(−27eiijj − 60eieijj − 41eij eij + 119

4 eiiejj

− 91
8 eij eiej + 415

8 eiiej ej + 4141
64 eieiej ej

)+O
(
t3
)}

K[Ã](f, t) =
1

(4πt)2

∫
d4x ε3/2f

{
1+ t

ε

(
3
4eii − 1

16eiei
)

+ t2

360ε2

(
81eiijj − 111eieijj + 162eij eij − 711

4 eiiejj

− 1029
4 eij eiej + 793

8 eiiej ej + 4263
16 eieiej ej

)+O
(
t3
)}
.

(24)

Hereei...j = ∂i . . . ∂j ln ε. This completes the calculation of the UV divergent terms.
We can define a ‘total’ heat kernel asK[A0] +K[Ã] −2Kgh. We see that the contribution

of ghosts is not cancelled by that ofA0 and of the ‘non-physical’ components ofÃ.
As a check, in the appendix we derive (24) by an alternative method.
The asymptotic expansion constructed above gives 2n spatial derivatives ofε in anyan.

Hence it is clear that a certain smoothness ofε(x) is needed. Our expansion is not valid if
ε changes abruptly, such as, for example, for a bubble in water. For the configurations of
the latter type, boundary terms in the heat kernel expansion should be taken into account.

4. Conclusions and discussion

In this paper we have performed the path-integral quantization of electromagnetic fields in
a dielectric medium. As a first step, we considered the first-order action and derived the
canonical Poisson brackets. Next, we constructed the canonical (simplectic) measure in the
phase space. We built up a measure in the configuration space by means of an integration
over the canonical momenta. This measure appeared to be different from the naive one.
By choosing a suitable gauge-fixing condition (7) we reduced the path integral to a product
of three determinants of operators of Laplace type. For the evaluation of the ultraviolet
divergent parts of these determinants the standard heat kernel technique [20] is available.
Our results are re-checked by another technique (see the appendix). We observed no
cancellation of ultraviolet divergencies between ghosts and any ‘non-physical’ components
of the vector potential. Thus it is highly unlikely that the full quantized electrodynamics
in dielectric media is equivalent to a theory where only two polarizations of photons are
quantized.
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In principle, the divergences of the effective action can depend on the choice of gauge.
However, if a gauge-invariant regularization such as the zeta function one is used, the
pole term proportional to thet0 term in the total heat kernel must be gauge independent.
Therefore, our main result is not sensitive to the particular method of gauge fixing.

The next step is to work out a suitable cut-off procedure for the path integral. This
problem is very non-trivial in the present case. Sinceε → 1 at high frequencies, the cut-off
is physical, it will not be removed after a renormalization. Therefore, we must be sure that
the basic properties of the quantum field theory, such as unitarity and the absence of gauge
anomaly, are valid at a finite cut-off. After having solved this problem, it will be possible
to consider the vacuuum energy densities and other physical quantities of interest.
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Appendix

In this appendix we briefly describe an alternative method for the evaluation of the heat
kernel expansion which we used to check our results.

We can represent the functional trace in the right-hand side of (14) as an integral overx

of diagonal matrix elements between〈x| and|x〉 and insert ‘unity’ expressed via an integral
of momentum eigenstates:

Tr exp(−tL) =
∫

d4x d4k

(2π)4
〈x| exp(−tL)|k〉〈k|x〉. (A1)

The generic form of the matrix element in (A1) is〈x|F1(ε, ∂ε) F2(∂)|k〉, whereF1 andF2

are some polynomials ofε and its derivatives and of∂i , respectively. Acting on the leftF1

is replaced by its value at the pointx. Acting on the right,F2 is replaced byF2(ik). It is
easy to see that the result is∫

d4x d4k

(2π)4
exp(−tL(ε(x), ∂µ→ ∂µ + ikµ)) (A2)

where we should take all external fields at the pointx, shift all derivatives by ik, and drive
derivatives to the right. It is understood, that∂ at the very right-hand position vanishes.

Consider the heat kernel for the ghost operator:

Kgh(t) =
∫

d4x d4k

(2π)4
exp

(
t
(
∂2
i + 2ikj ∂j + (∂j logε)∂j + ikj (∂j logε)− k2− εω2

))
(A3)

where{kµ} = {ω, kj }. Time derivatives are dropped becauseε(x) is static.
To obtain a small-t asymptotic expansion of (A3), one should isolate the factor

exp(−t (k2+ εω2)) and expand the rest of the expression in a power series of the operators
and functions involved. Next one should integrate over momenta and collect all terms
with the same powers of proper timet . Denote the exponential in (A3) as exp(A + B),
whereA = −t (k2 + εω2). Note, thatA does not commute withB. However, the repeated
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commutator [[[B,A], A], A] vanishes. This allows us to present the exponential as follows
(see e.g. [21]):

exp(A+ B) = expA
(
1+ B + 1

2[B,A] + 1
6[[B,A], A]

+ 1
2B

2+ 1
2[B,A]B + 1

6[B, [B,A]] + 1
8[B,A]2+ · · · ). (A4)

We retained all the terms which contribute to the two leading terms of the asymptotic
expansion proportional tot−2 and t−1.

Acting as explained above we obtain the asymptotic expansions for the heat kernels
Kgh, K[A0] andK[Ã] . The first two terms are in complete agreement with (24). Calculations
of the third terms are too complicated to be done just as a check.
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